

Sustainability in commercial laundering processes Module 5

"Energy in laundries"

Chapter 2 Usage of energy in laundries

Modul 5 "Energie in Wäschereien"

Kapitel 2 "Energieeinsatz"

- Distribution/supply of energy in laundries
- Kind of energies in laundries
- Heat content of different energy sources
- Heat supply in a small and a big laundry
- Steam generation types of boilers
- Energy conversion at the example of steam heating
- Comparison of direct heating with gas and steam
- Energy saving at mangling
- Active and passive measures for energy saving

After finishing this chapter, you will

- Know energy distribution and the most important kinds of energy sources in laundries
- Be able to compare the heat contents of different energy sources
- Know the meaning of heating energy, be able to differentiate the different kinds of energy generation and be able to compare those regarding advantages and disadvantages
- Be able to assess the different ways of steam generation
- Recognize the advantages of direct heating by the example of dryers
- Be able to explain possibilities of energy saving at mangling
- Be able to apply active and passive measures for energy saving

- In laundries, energy is necessary to generate process heat (steam, hot water)
- Energy sources are gas, electricity and fuel oil (extra light) and fuel oil (heavy: S), that is:
- Gas and Electricity for
 - Direct *machine heating* as well as for
 - Indirect application to heat *transfer media*
- Heavy fuel oil is normally applied in industrial plants only due to complex legal requirements for its application

	cal	kcal	Mcal	J = Ws	MJ	kWh
1 cal	1	0,001	0,000001	4,1868	0,0000041868	0,000001163
1 kcal	1.000	1	0,001	4.168,8	0,0041868	0,001163
1 Mcal	1.000.000	1.000	1	4.186.800	4,1868	1,163
1 J = Ws	0,2388	0,0002388	0,000002388	1	0,000001	0,0000002778
1 MJ	238.800	238,8	0,2388	1.000.000	1	0,2778
1 kWh	860.000	860	0,86	3.600.000	3,6	1

5

Distribution of energy in laundry

Example: laundry with capacity of 600 t/a

(specific energy consumption: electricity/fuel 0,3/3,4 kWh/kg textiles)

Percentages depend on machines, machine load and washing programme

source: BGW

Energy sources in laundries

Chapter 2 "Usage of Energy " 7

Leonardo da Vinci

Steam						
High pressure	Low pressure					
Steam pressure > 1,0 bar usually: 8 -12 bar (above air pressure) temperatures: 175 - 191 °C Steam characteristics • high heat capacity • excellent transfer capacity • constant efficiency at max. power Application technology + direct steam flow washing and steam process, therefore short heating up of heating washing liquor + high efficiency (economic) + reserve at high peaks of consumption (big boiler) • high acquisition costs • inspection by legislation required	 Steam pressure 0,5 - 1,0 bar usually: 0,5 bar (above air pressure) temperatures: max. 120 °C Steam characteristics high heat capacity excellent transfer capacity Application technology short heating up intervals simple handling and maintenance/overhaul Iow acquisition costs no legal requirement of inspection (TÜV), registration of boiler only temperature max. 120 °C, therefore inapplicable for mangles, tumblers, presses etc. 					

Local supply (heating)

- Individual heating of each machine
- Laundries at a capacity of up to 500 kg textiles/day can normally run with gas or electricity (prerequisite: local favourable fees)
- Advantage of individual heating: flexible usage of resources dependent on amount of textiles
- Economical: no higher use of energy than required
- Efficient and environmentally friendly

Local supply (heating)

Hotel laundry with a capacity of 42 kg/h

source: BGW

Central supply

- For laundries at a capacity of more than 500 kg laundry application of central heat supply is useful
- Those huge laundries normally heat by steam, sometimes with hot water or thermo oil
- Most important heating source is steam.
- Advantage: distribution of heating medium constantly possible as well as the possibility of direct heating of the washing liquor
- Performance of steam generator is very important.
- At high utilization, all machines may require heating energy at same time
 - Boiler should be capable to supply all machines with enough steam, even at high production peaks

Steam boiler

source: Loos International

Steam boiler

Advantages

- Dry steam
- Constant pressure
- Robust pumps applicable
- High heat capacity (storage capacity)
- Controlling possibilities
- Low soot production due to less ignitions
- Low maintenance costs
- Good implementation in supply systems consisting of several boilers

Disadvantages

- Costs
- Size
- Space requirement
- Legal permission
- Inspection needed
- Higher maintenance/overhaul expenditure
- Long heating intervals
- Higher heating energy losses at a closedown for several days
- Start of boiler by expert required

Rapid steam generation

 Advantages in comparison to steam boilers with high capacity Less space requirement Short heating intervals Quick adoption to needs Low acquaintance costs Low losses of heating energy 	 Disadvantages No storage capacity Higher maintenance/overhaul expenditure Strict specifications for feed liquor Steam contains relatively high water volume Not applicable at high production peaks

- 1 Feed-head
- 2 Compressed-air supply
- 3 Burner
- 4 Intake-pipe
- 5 Opening for cleaning
- 6 Heating system
- 7 Pressure-regulating valve
- 8 Burner monitoring

example: tunnel finisher

Steam heating		Gas heating		
Steam consumption 285 kg/h	Costs for steam	Gas consumption 157 kWh	Costs for gas	
at 8 h/d (300 d/a)	20.928 Euro / a		16.968 Euro / a	

Machine capacities per hour are practically identical

Final energy at **steam heating**

Final energy at **direct heating** (gas)

Advantages direct heated - dryer

- Improved temperature-controlling of drying process (modulating burner)
- Constant machine performance during machine-life-cycle
 - + Performance of machines with steam-heat exchangers decrease because the heat exchanger gets dirty
- Significant higher drying performance of direct-heated dryers
 - + Higher performance/capacity means lower costs
- Lower maintenance expenditure
 - + Especially lower cleaning costs
- Capacity of dryers is expandable in any order of magnitude
 - + Capacity of boiler limits expandability (at application of steamheated machines)

Comparison gas-/steam heated dryers

Direct and indirect heating of dryers

Chapter 2 "Usage of Energy " 20

Comparison of gas-/steam heated dryers

Energy application mangles

Heat recovery at mangling

Heat balance at mangling

textile heating	4 %
heating of water	5 %
vaporization of water	40 %
heating of air	17 %
heat losses	37 %

optimisation of mangle by

- Adoption of mangling velocity
- Controlling of residual textile moisture
- Controlling of cylinder press temperature
- Adoption of contact pressure/ thickness of textile layer

active environmental protection

Optimize energy consumption by

- ⇒ Burner optimization
- ⇒ Use of adapted burners
- ⇒ Reduced washing temperatures
- ⇒ Optimized washing mechanics

without negative influence on washing performance as well as life cycle of textiles

passive environmental protection

Reduce energy consumption by

- ⇒ Technical measures to reduce energy consumption
- ⇒ Application of heat exchangers to reduce temperature of effluent water