

Sustainability in commercial laundering processes

Module 3
Water and energy saving possibilities in tunnel washers

Chapter 4

By process design and adapted detergent usage

Learning targets

- This chapter will provide a short introduction in the washing process
- This chapter will provide you with typical data of water, energy and chemical consumption of an industrial washing process
- This chapter will show you the possible energy savings by the introduction of a low(er) temperature industrial washing process
- This chapter will present 2 case studies with an economical analysis of replacing a high temperature washing process with low(er) temperature washing process
- The importance of textile wear for an economical implementation of low(er) temperature washing processes will be presented

Content

- Introduction
- Consumption washing process
- High versus low temperature washing process
- Case studies of 2 industrial laundries
- Conclusions

Introduction

- Total energy consumption industrial laundries in The Netherlands per annum
 - 1998: 1522 TJ
 - 2005: 1408 TJ with 17% more production
 - thus a total energy reduction of 21% in 7 years
- The intention between 2005-2008 is a further reduction of energy of 10%

Consumption washing process

- Washing process is estimated to consume 450 TJ per year (1998)
- Energy savings: 20% = 90TJ (assumption)
- Total energy savings = 6%

Sinner factors I

- The four Sinner factors for an optimal washing process:
 - temperature
 - chemical action
 - mechanical action
 - time

Sinner factors II

- The four Sinner factors for an optimal washing process:
 - temperature
 - chemical action
 - mechanical action
 - time

High vs low temperature washing I

- Low temperature
 - less energy consumption
 - less grease, oil, and fat removal
 - insufficient destruction of bacteria (logarithmic relation)

Thermal Death Time Curve for Coxiella burnetti, z = 40C

High vs low temperature washing II

- Low temperature
 - less energy consumption
 - less grease, oil, and fat removal
 - insufficient destruction of bacteria

other chemicals

Thermal Death Time Curve for Coxiella burnetti, z = 40C

Case studies

- 2 case studies
- High, lower and low temperature washing examined
- Influence on laundering costs determined of:
 - steam: 23.50 €/ton (based on gas price)
 - water: 1.31 €/m³
 - chemicals: 1000 €/ton, 1500 €/ton, 1800 €/ton
 - textile: 7500 €/ton
 - (50% gets lost; 50% is worn out after 100 washing cycles, T = high)
 - (50% gets lost; 50% is worn out after 120 washing cycles, T = lower)
 - (50% gets lost; 50% is worn out after 200 washing cycles, T = low)
 - capacity loss due to changing programs
 - loading (kg/h)

Case 1-High temperature washing process

- Tunnel washer: 13 compartments of 50 kg loading
- Charges: 50 kg white cotton, polyester/cotton
- Cycle time per compartment: 145 seconds (25 loads/h)
- Condition Pre / Main wash: 41 °C / 90 °C

High temperature washing process

Throughput: 1241 kg/hr

Lower temperature washing process

Throughput: 1241 kg/hr

High vs lower temperature washing

Main wash temperature	90	70	$^{\circ}\mathrm{C}$			
Consumption						
Chemicals	12.4	12.4	kg/h			
Steam	725	568	kg/h			
Water	7.5	7.5	m3/h			
Textile	6.2	5.0	kg/h			
Costs						
Chemicals	10	15	€/ton laundry			
Steam	13.7	10.8	€/ton laundry			
Water	7.9	7.9	€/ton laundry			
Textile	37.5	30	€/ton laundry			
Total costs	69.2	63.7	€/ton laundry			
Excl. textile	31.6	33.7	€/ton laundry			

Case 2-High temperature washing process

- Tunnel washer: 8 compartments of 50 kg loading
- Charges: 32 kg (average) coloured and white

- cotton: 50 kg (33%)

polyester/cotton 50/50: 30 kg (33%)

- quilts/blankets: 20 kg (33%)

- Cycle time per compartment: 5 minutes (12 loads/h)
- Capacity loss due to changing programs: 42%
- Condition Pre / Main wash: 35 ℃ / 85 ℃

High temperature washing process

Throughput: 222 kg/hr

Low temperature washing process

Throughput: 222 kg/hr

High vs low temperature washing

Main wash temperature	85	50	°C
Consumption			
Chemicals	16.8	16.7	kg/h
Steam	410	200	kg/h
Water	4.5	4.5	m3/h
Textile	1.1	0.6	kg/h
Costs			
Chemicals	75.5	135.5	€/ton laundry
Steam	43.3	21.1	€/ton laundry
Water	26.6	26.6	€/ton laundry
Textile	37.5	18.8	€/ton laundry
Total costs	183	202	€/ton laundry

Low temperature washing process

- Throughput: 346 kg/hr; capacity loss: 27%
- Production: 50 kg cotton, 50 kg polyester/cotton 50-50, 20 kg quilts/blanket
- Less water & chemistry (10%) consumption

High vs low temperature washing

Main wash to	emperature	85	50	50	$^{\circ}\mathrm{C}$
Throughput		222	222	346	kg/h
Consumption	1				
	Chemicals	16.8	16.7	21.1	kg/h
	Steam	410	200	105	kg/h
	Water	4.5	4.5	2.6	m3/h
	Textile	1.1	0.6	0.87	kg/h
Costs					
	Chemicals	75.5	135.5	122	€/ton laundry
	Steam	43.3	21.1	7.1	€/ton laundry
	Water	26.6	26.6	9.9	€/ton laundry
	Textile	37.5	18.8	18.8	€/ton laundry
Total costs		183	202	157.7	€/ton laundry

Conclusion

- Higher chemicals price cannot be compensated by energy savings alone.
- Textile savings (very) important
- Washing process at low temperature needs to be evaluated for each laundry