

Sustainability in commercial laundering processes

Module 1
Usage of water

Chapter 5 b

Waste water treatment Various filtration methods for laundry effluent

Content

- Waste water treatment and water quality
- Waste water treatment methods
- Membrane filtration: how does it work?
- Membrane filtration: how to select the right technology?
- Reverse Osmosis
- Ultrafiltration
- Ceramic membranes
- Membrane filtration and filtration cost
- Prefiltration & Particle filtration
- Performance limiting parameters & Maintenance
- Simple filtration methods & Resources recovery concept
- Summary

Learning targets

- You will learn about the basics of membrane filtration technology and how it can be used to treat laundry effluent.
- Be able to select the optimal filtration method according to both the quality of the water you are treating and the quality of the water you wish to obtain after filtration.
- Know about the importance of pretreatment steps to successfully use membrane filtration.
- Learn why and how to correctly maintain membrane filtration systems.
- Know how considerable water savings can be obtained by combining simple filtration and appropriate washing processes.

Waste water treatment

Do you want to improve the quality of your laundry effluent or reuse the water in your laundry? ...and save money?

Waste water treatment - IN

 The composition of waste water can vary significantly and influences the choice of effluent treatment method.

	COD	BOD	рН	Ptot	Ntot	TSS
	mg/l	mg/l		mg/l	mg/l	mg/l
normal	1000	400	10	20	2-16	60
heavy	3500	1250	10	30	5-30	150

Source: Vercaemst & Dijkmans, 'BBT-studie, 1999'.

- Heavy metals ions
- Hydrocarbons
- AOX
- Lint

Waste water treatment - OUT

- When you define the target quality of your laundry effluent or the quality of your reuse water then consider the following parameters:
 - Low COD content
 - Low salt content
 - No metals
 - No dyes colour
 - No biological activity

Waste water treatment methods

- You may already know about classical waste water treatment methods as
 - Coagulation & flocculation (& sedimentation, flotation)
 - Aim: Remove suspended solids, colloids, natural organic materials.
 - Active coal filtration
 - Aim: Remove natural organic materials, microcontaminants.
 - Oxidation (ozon, UV, chlorine, hydrogen peroxide)
 - Aim: Degradation of organic materials, disinfection.
 - Biological methods
 - Aim: Degradation of organic materials, nitrogen, iron.
 - lon exchange
 - Aim: Water softeners to remove water hardness.
 - Destillation & evaporation
 - · Aim: Removal of solvents, oils.
- In this module you will learn about Membrane Filtration.

Membrane filtration: how does it work?

A simple view on how membranes function in removing contaminants:

Membrane filtration: how to select?

 This overview shows how you can select the separation process according to the size of the contaminants in waste water.

Membrane filtration: how to select?

Leonardo da Vinci

- Permeate quality highly depends on the filtration method used.
- Here below you can see from left to right samples of waste water feed, ultrafiltration permeate and reverse osmosis permeate.

source: Wehrle

Reverse osmosis (RO)

 Smallest materials (incl. salts) can be removed by reverse osmosis resulting in permeate of highest quality.

Spiral RO membranes

Leonardo da Vinci

The spiral wound membrane element is constructed of one or more membrane envelopes wound around a perforated central tube. The permeate passes through the membrane into the envelope and spirals inward to the central tube.

Spiral RO membranes

The spiral wound membrane element is constructed of one or more membrane envelopes wound around a perforated central tube. The permeate passes through the membrane into the envelope and spirals inward to the central tube.

Cross-flow principle

 Concentration polarisation is a phenomenon whereby in the vicinity of the membrane surface an increased concentration of waste water materials is found.

Cross-flow principle

- High concentration polarisation results in
 - i) Strongly reduced permeate flow
 - ii) Diffusion of salts through the membrane
 - iii) Precipitation of salts or 'scaling'

Cross-flow principle

 Cross-flow is required to minimize concentration polarisation through turbulence.

Reverse osmosis

Concentration polarisation impacts the set-up of an RO installation:

An example of an RO installation:

source: See:Water

Reverse osmosis

• An example of an RO installation:

source: See:Water

Leonardo da Vinci

 Workwear soils as oil emulsions and bacteria can be removed by ultrafiltration.

Ultrafiltration

- Application:
 - Treatment of waste water of workwear plants
 - Pretreatment before RO installation
- Feed water quality:
 - TSS < 50 mg/l
 - prefiltration \pm 200 μ m
- Permeate water quality:
 - SDI < 2 ("Silt Density Index")
 - Turbidity < 0.1 NTU
 - Microorganisms log 4 (virus) to log 6 (bacteria) reduction
- Permeate recovery: 85-95 %

Ultrafiltration

• An example of an UF installation:

Module 1 "Usage of water"

Ceramic membranes

- Ceramic membranes are very robust membranes (acidity, alkalinity, temperature).
- Miscropic view and structure of a ceramic UF membrane:

Membrane filtration

- A higher permeate quality results in a higher filtration cost.
- Microfiltration & Ultrafiltration:
 - Process flow: 80-100 l/h.m²
 - Pressure < 1.5 bar, energy consumption of 0,1 kWh/m³
 - Operational cost: <u>0.15 0.20 EURO/m³</u>
- Nanofiltration:
 - Process flow: 20 l/h.m²
 - Pressure < 10 bar, energy consumption of ≤ 0.5 kWh/m³
 - Operational cost: 0.25 0.35 EURO/m³
- Reverse Osmosis:
 - Process flow: 15 l/h.m²
 - Pressure < 10 bar, energy consumption of ~ 0.5 kWh/m³
 - Operational cost < 0.4 EURO/m³

PREFILTRATION IS ESSENTIAL !!!!!

- Use of prefiltration methods such as particle filtration are essential in ensuring that membranes do not get immediately blocked and therefore allow membrane filtration to function as intended.
- For example, particle filtration can preced Ultrafiltration, which can preced Reverse Osmosis or Nanofiltration.

Particle filtration

A whole range of particle filtration equipment is available:

PRESSURE FILTRATION

- * cartridge filters
- * bag filters
- * strainers
- * automatic filters
- * sandfilter
- * filterpress
- * rotating drumfilters

VACUUMFILTRATION

- * rotating drumfilter with precoat
- * rotating filter

GRAVITARY FILTRATION

- * static sieve
- * rotating sieve
- * vibrating sieve

CENTRIFUGAL FILTRATION

- * centrifuge
- * decanter

Particle filtration

Leonardo da Vinci

- Sieves (0.2 0.25 mm)
 - Static Sieve
 - no moving parts
 - clogging potential
 - selfcleaning is expensive
 - Rotating Sieve
 - almost no clogging
 - reliable
 - expensive
 - Vibrating Sieve
 - maintenance
 - energy
 - noise
 - very efficient

- 1) Raw waste wate inlet
- 2) Sieve
- 3) Screen matter discharge
- 4) Sieved water discharge

Other performance limiting parameters

Other performance limiting parameters

Other performance limiting parameters

Fouling

Leonardo da Vinci

Leonardo da Vinci

Regular cleaning with special detergents increases membrane lifetime:

Scaling & Silica solubility

- Use of suitable detergents is a key requirements when using membrane filtration based waste water treatment.
- Use an anti-scalant product.

source: AKZO PQ

Simple filtration methods

- By using simple filtration methods water can be reused resulting in considerable reduction of water consumption.
- Consider using simple filtration systems before introducing the more efficient but more costly membrane systems.

Microfilter

Filtermodule incl. Tubing + Touch-Screen Control

Leonardo da Vinci

Microfilter

Leonardo da Vinci

Water Savings in L/kg Textile, Total Laundry

....water usage of 2,5 l/kg*

Resources Recovery Concept

Implementing in your laundry plant a fully integrated solution leads to maximal water and cost savings

Membrane filtration - Summary

- Use is highly dependent on the price of water
- Membrane technology is expensive, however membrane price is dropping:
 - Price/m²: MF/UF: \$80 → 10\$ NF/RO: 15 \$ → 10\$
 - Energy: Pressure NF: 7 → 3 bar RO: 12 → 6 bar
- Investment cost becomes relatively more important
- Feed water pretreatment is important
- Use detergents that are compatible with membrane filtration

Thank you for your attention