Leonardo da Vinci Project

1

Sustainability in commercial laundering processes

Module 1 Usage of Water

Chapter 5

Waste water treatment Biological treatment

Content

- Introduction
- Laundry-wastewater
- Microorganisms
- Wastewater installation engineering
- Examples of WWTP's in laundries

After finishing this chapter, you will

- Know the composition of waste water in laundries
- Know when and why waste water should be treated
- Know and be able to explain biological waste water treatment
- Know the role of microorganisms in biological waste water treatment process
- Know 4 different (biological) possibilities to treat waste water and be able to explain them
- Be able to point out the differences between the different processes

Why wastewater treatment in laundries ?

- Reduce environmental pollution
- Reduce consumption of natural resources
- Avoid disruption to natural circuits

Comply with licensing requirements and orders

£

€

Laundry wastewater

Content:

Laundry wastewater contains substances mainly from 3 sources:

- Substances from the raw water (tap water, well, etc.)
 => salts
- Detergents
 => tensides, phosphates, silicates, etc.
- Dirt from the clothes
 => particles, fat, oil, colour, etc.

Important: limiting parameters for discharge? => e.g. P, AOX, heavy metals

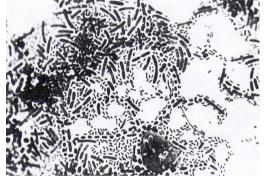
Concentrations (3 examples of laundry wastewater):

•	Temp [℃]	35	41	36
•	рН	9,3	9,9	9,6
•	Conductivity [mS/cm]	1,7	3,0	2,4
•	COD [mg/l]	1.100	900	1.450
•	BOD ₅ [mg/l]	n.n.	350	670
•	N,tot. [mg/l]	25	22	35
•	P,tot. [mg/l]	11	55	7

т	Temperature (heat exchanger? Thermal or chemo-thermal disinfection?)
рН	=> Alkalinity !
COD	"Chemical Oxygen Demand" => parameter for the organic pollution
BOD ₅	"Biochemical Oxygen Demand" after 5 days => parameter for the biodegradable pollution
P,tot.	Total Phosphorous (P-free detergents ?)

Laundry wastewater

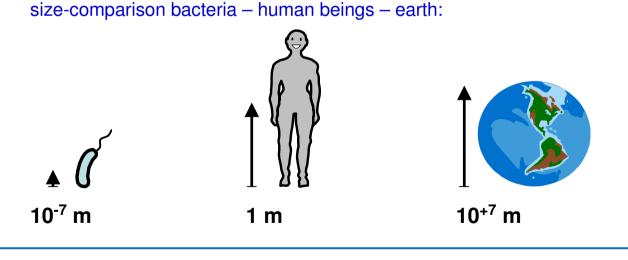
Other Contents:


- AOX (=> use of Chlorine in main wash ?)
- Heavy metals (=> textiles from metal working industry, kitchen wear)

What is biological wastewater treatment ?

Wastewater treatment with

- Bacteria
- Other Microorganisms (fungi, special processes only)


Picture of a typical bacteria community from a municipal wastewater treatment plant

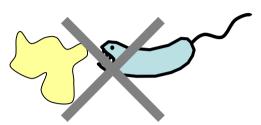
What is biological wastewater treatment ?

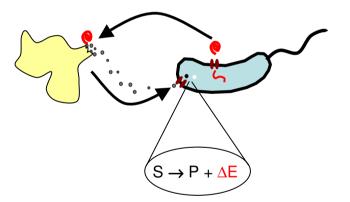
Wastewater treatment with

Size of Bacteria: "Micro organisms" => micro meter !

Module 1 "Usage of water"

microorganisms

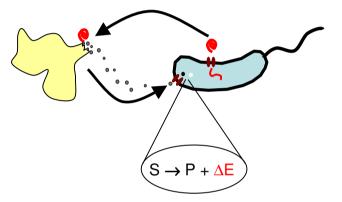

What can microorganisms do ?


MO's do not "eat" the pollution

 MO's do wastewater treatment by conversions with **enzymes**

S (Substrate, in ww-treatment the **pollution**)

- = **P** (Product, CO₂, N₂, etc)
- + Energy (which is used for growing => surplus biomass !)



What can microorganisms do ?

- Suitable conditions:
 - MO's do the work for free
 - Often the only way for cost-effective wastewater treatment

Conversions by microorganisms

• Aerobic degradation of organic pollutants ("COD, BOD₅")

Org.Poll. + $O_2 \implies CO_2 + H_2O$

truly:

Org.Poll. + $O_2 => CO_2 + H_2O + \Delta E + Bacteria + residual Poll.$

- Surplus bacteria = up to 50 % of org.Poll. in municipal WW-treatment !
- Residual Pollution = usually 10-20 % of org.Poll. in municipal WW-treatment
 - = 5-50 % in industrial WW-treatment (biodegradability !)
 - = could be less than 5 % in laundry-WWTP's (good biodegr.)

Conversions by microorganisms

- Degradation of nitrogen
- 3 steps: **org.N** => NH_4

$$NH_4 + O_2 \implies NO_3 + H_2O$$

 $NO_3 \implies N_2$

14

Conversions by microorganisms

- Degradation of nitrogen
- 3 steps: **org.N** =>NH₄

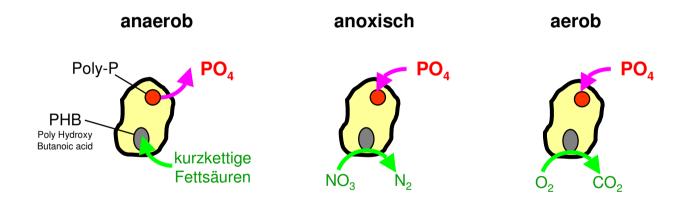
$$MH_4 + O_2 \implies NO_3 + H_2O$$

$$MH_4 + O_2 \implies NO_3 + H_2O$$

$$MH_4 + O_2 \implies NO_3 \implies N_2 + CO_2 + H_2O$$

- 3 steps
- Total different conditions (org.C, O2) !

Conversions by microorganisms


Degradation of phosphorus

... precipitation (non-biological, see below)

Conversions by microorganisms

Degradation of phosphorus (biological way)

- Surplus P-uptake in bacteria, removal with surplus sludge (P-removal from wastewater limited, different conditions, not easy to handle)

17

Conversions by microorganisms

Anaerobic degradation of organic pollutants

Org.Poll. => $CH_4 + CO_2$

- No aeration
- High-energetic product (burning => energy, electricity)
- Considerably less surplus sludge
- High substrate concentrations (COD > 10.000 mg/l)
- Used in anaerobic sludge stabilisation

18

Conversions by microorganisms

Anaerobic degradation of organic pollutants

Org.Poll. => $CH_4 + CO_2$

Truly:

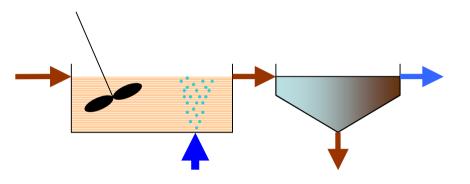
Org.Poll.

- => (Hydrolysis) => fragments, diluted Poll. $=> (Acidification) => H_2 + CO_2 + organ. Acids + Alcohol$ $=> (Acetogene) => H_2 + CO_2 + Acetic Acid$ $=> (Methanogene) => CH_4 + CO_2$
- 4 steps
- 4 different MO-species
- Stable conditions important (temperature, product-concentrations)

Conversions by microorganisms

- Degradation of persistant pollutants (oil, fat)
- 1. undissolved Poll. + bio-tenside => micro drops => uptake into the Cell

2. conversion:

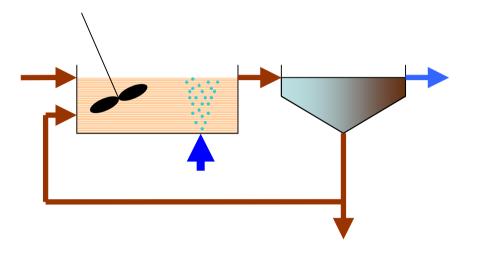

Principle: **bad** biodegradable → **good** biodegradable - by formation of --COOH

- by separation of C_2 -fragments (acetic acid, => citric cycle)

Construction of WWTP's:

- Diluted
- Fixed bed
- Constructed wetlands
- Combinations

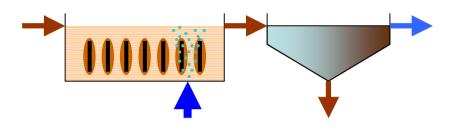
Very simple process Low maintenance For low and medium polluted WW


MO's could be washed out

Module 1 "Usage of water"

Construction of WWTP's:

- Diluted
- Fixed bed
- Constructed wetlands
- Combinations


≻,activated sludge process"

Recirculation of the MO's
 =>(higher MO-concentration for better removal rates)

Construction of WWTP's:

- Diluted
- Fixed bed
- Constructed wetlands
- Combinations

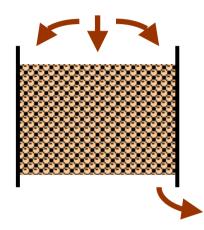
MO's fixed no wash out higher flow rate Biofilm less sensitive Less surplus sludge

MO-separation also required

Module 1 "Usage of water"

Construction of WWTP's:

- Diluted
- Fixed bed rotating disk reactor
- Constructed wetlands
- Combinations


MO's rotate Alternating Contact air / WW No aeration required Less energy consumption

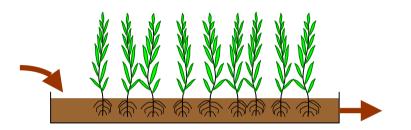
"tube-reactor" (no dilution of toxic load)

Construction of WWTP's:

- Diluted
- Fixed bed trickling filter
- Constructed wetlands
- Combinations

MO's at packing material (e.g. lava) WW "trickles" No aeration required Low energy consumption

2nd step in N-degradation


Module 1 "Usage of water"

Chapter 5 "Waste Water Treatment" 24

Construction of WWTP's:

- Diluted
- Fixed bed
- Constructed wetlands
- Combinations

Treatment by MO's in root area treatment also in winter time (ca. 80 %) O_2 supply by the plants (e.g. reed) Beautiful optical appearance ("ecological")

High space requirement Accumulation of toxic substances possible (in soil area)

Module 1 "Usage of water"

Construction of WWTP's:

- Diluted
- Fixed bed
- Constructed wetlands
- Combinations
 - biological chemical

UV, H₂O₂, Ozone

- Oxidation of persistent substances
- Detoxification
- Increase of biodegradability
- High energy consumption
- Chemicals must be added

Construction of WWTP's:

- Diluted
- Fixed bed
- Constructed wetlands
- Combinations
 - biological chemical

- Precipitation Flocculation Flotation
- Removal of non-biodegradable components
- Additional solid-liquid-separation
- Chemicals to be added...waste disposal !

Construction of WWTP's:

- Diluted
- Fixed bed
- Constructed wetlands
- Combinations
 - biological chemical

Precipitation

e.g. P-Elimination in WW-treatment (Fe-III-salts, AI-salts)

Principle:

Formation of low soluble components & sedimentation or separation

Examples: P-Elimination: $PO_4^{3-} + Fe^{3+} => FePO_3 \downarrow$ Metal-Elimination: $Fe^{3+} + 3 OH^- => Fe(OH)_3 \downarrow$ $Cu^{2+} + 2 OH^- => Cu(OH)_2 \downarrow$ (increase pH)

Construction of WWTP's:

- Diluted
- Fixed bed
- Constructed wetlands
- Combinations
 - biological chemical

Flocculation

Additional separation of MO's from treated water

Problem:

- Settling velocity of small MO-flocs or single MO's too low for technical application

- Settling velocity = f (particle diameter)²

Principle:

- Small flocs or single MO's are coalesced by flocculation agents (organic, synthetic, high molecular and water soluble poly-electrolytes, Fe(III)-salts, ...)

- Increase of floc-size => increase of settling velocity
- Better sludge-drainage

Construction of WWTP's:

- Diluted
- Fixed bed
- Constructed wetlands
- Combinations
 - **Biology & Filters**

e.g. sand filter

- For supplement sludge separation
- Better effluent quality
- Separation of single MO's
- Adsorption

Module 1 "Usage of water"

Chapter 5 "Waste Water Treatment" 30

Construction of WWTP's:

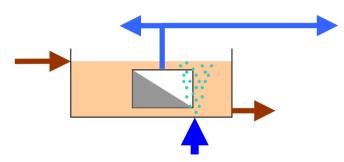
- Diluted
- Fixed bed
- Constructed wetlands
- Combinations
 - **Biology & Membranes**

Wastewater Recycling

- => Germfree effluent
- => Elimination of residual pollution
- => Elimination of heavy metals
- => Elimination of salts

Construction of WWTP's:

- Diluted
- Fixed bed
- Constructed wetlands
- Combinations
 - **Biology & Membranes**


Alternative for sedimentation tank

- external arrangement
- => Germfree effluent
- => Elimination of residual pollution
- => Less space requirement
- => modular
- => Recycling of process water

Construction of WWTP's:

- Diluted
- Fixed bed
- Constructed wetlands
- Combinations
 - **Biology & Membranes**

Alternative for sedimentation tank

- internal arrangement
- => Germfree effluent
- => Elimination of residual pollution
- => Less space requirement
- => modular
- => Recycling of process water
- => MO's stay in the reactor (spezialised MO's)

Module 1 "Usage of water"

Chapter 5 "Waste Water Treatment" 33

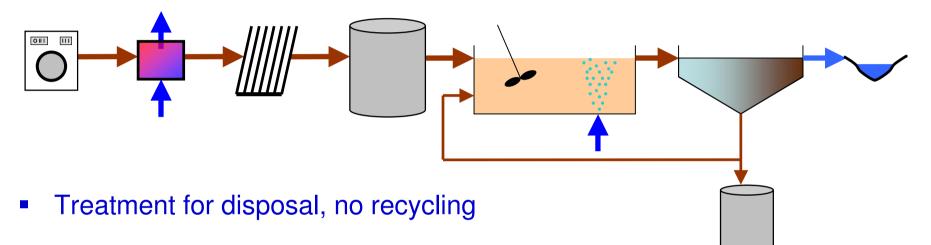
Construction of WWTP's:

- Diluted
- Fixed bed
- Constructed wetlands
- Combinations
 - Biology & Membranes

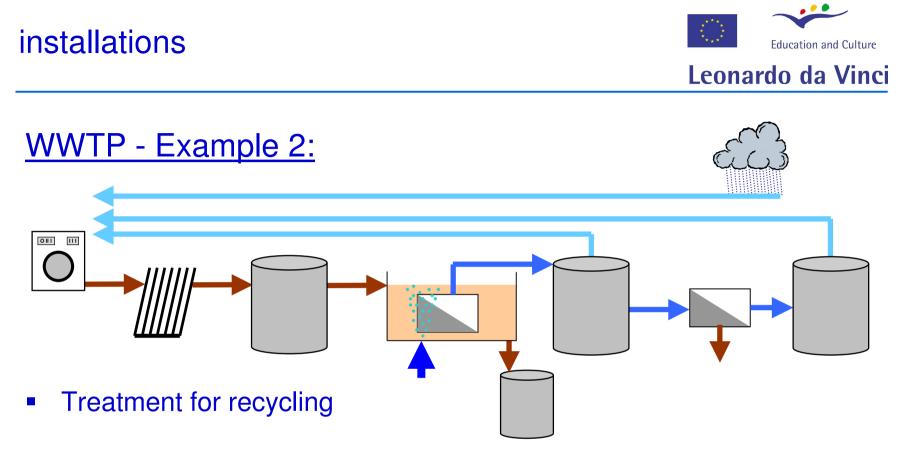
Combination of membranes

=> Recycling of process water
=> Additional elimination of salts and other pollutants

Module 1 "Usage of water"



WWTP's in laundries


- All solutions are applicable depending on problem & situation
- No continuous WW feed
 - requires storage tank
- Self-monitoring, maintenance & repair
 - Manpower requirement
 - Manpower with "keen sense for the plant"
- Cost accounting
 - Economy of operational costs "not worldshaking"
 - Investment relatively high (=> long payback period)

WWTP - Example 1:

- 700-800 m³/d
- 3000 EW
- COD-Elimination > 93 %
- Disposal in river
- Reduction of operational costs 50 %

- 150 m³/d
- 2000 EW
- COD-Elimination > 96 %
- Disposal in municipal sewer system
- Reduction of operational costs 50 % & recycling